- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Burdzy, Krzysztof (2)
-
Athreya, Jayadev (1)
-
Beck, Thomas (1)
-
Brandolini, Barbara (1)
-
Duarte, Mauricio (1)
-
Henrot, Antoine (1)
-
Langford, Jeffrey J. (1)
-
Larson, Simon (1)
-
Smits, Robert (1)
-
Steinerberger, Stefan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider systems of “pinned balls,” i.e., balls that have fixed positions and pseudo-velocities. Pseudo-velocities change according to the same rules as those for velocities of totally elastic collisions between moving balls. The times of collisions for different pairs of pinned balls are chosen in an exogenous way. We give an explicit upper bound for the maximum number of pseudo-collisions for a system of n pinned balls in a d-dimensional space, in terms of n, d and the locations of ball centers. As a first step, we study foldings, i.e., mappings that formalize the idea of folding a piece of paper along a crease.more » « less
-
Beck, Thomas; Brandolini, Barbara; Burdzy, Krzysztof; Henrot, Antoine; Langford, Jeffrey J.; Larson, Simon; Smits, Robert; Steinerberger, Stefan (, The Journal of Geometric Analysis)
An official website of the United States government
